ISOTOPIC COMPOSITION OF THE OXYGEN EVOLVED BY ILLUMINATED SPINACH CHLOROPLASTS AND GRANA WITH K₂C¹⁸O₃ AS A TRACER

BABETTE K. STERN*

Department of Biochemistry, University of Chicago, Chicago, Ill. (U.S.A.) (Received March 11th, 1963)

SUMMARY

The isotopic composition of the O_2 evolved in the Hill reaction by illuminated spinach chloroplasts and grana, using $K_2C^{18}O_3$ as a tracer, was determined. The results indicated that water oxygen was the precursor of the O_2 evolved in the Hill reaction. The O_2 contained a small amount of isotope which appeared to be derived from water oxygen that had exchanged with $K_2C^{18}O_3$. Spinach chloroplasts and grana were found to accelerate the rate of exchange of oxygen between $K_2C^{18}O_3$ and water.

INTRODUCTION

It is generally accepted that the O₂ evolved in photosynthesis is aerived from the oxygen of water and is independent of that of CO₂. This evidence is based on the work of a number of investigators who employed either water or CO₂ labeled with ¹⁸O as a tracer¹⁻³. However, Yosida et al.⁴ reported that two-thirds of the O₂ originates from water and one-third from CO₂. The exchange of oxygen between CO₂ and water⁵ sets a practical limit to the usefulness of ¹⁸O as a tracer to determine the source of the O₂ evolved in photosynthesis. This exchange is catalyzed by the enzyme, carbonic anhydrase (EC 4.2.1.1), which is present in large quantities in leaves⁶. The data, cited above, on the source of O₂ in photosynthesis, have not included information about the extent of this exchange reaction under the particular experimental conditions. It seemed that a careful investigation of this problem under more rigorous experimental conditions was warranted.

The system chosen for study was one in which spinach chloroplasts photoreduce ferricyanide with the concomitant evolution of a stoichiometric amount of O_2 . These chloroplasts are incapable of causing a net reduction of CO_2 . However, Warburg and Krippahl, have proved that CO_2 is required for this reaction. For the past few years our laboratory has extensively investigated the role of CO_2 in the Hill reaction. Chloroplasts from every species of plants examined show a CO_2 requirement for the Hill reaction. CO_2 may be removed from these chloroplasts resulting in a loss of the Hill reaction. However, if CO_2 is added back, the ability to reduce the oxidant and produce O_2 is restored. If the oxygen atoms of CO_2 contribute to the O_2

^{*} Present address: Department of Medicine, University of Chicago, Chicago, Ill. (U.S.A.).

evolved, this should be most easily demonstrated under conditions where added CO_2 is being picked up. The chloroplasts were depleted of endogencus CO_2 in buffer of pH 6.7 and CO_2 was added in the form of K_2CO_3 highly labeled with ¹⁸O and then the chloroplasts were illuminated. After illumination the O_2 was collected for isotopic analysis. The exchange of oxygen between CO_2 and water was measured by determining the amount of ¹⁸O remaining in the various species of carbonate at the end of the illumination period. The results indicated that water oxygen was the precursor of the O_2 evolved in the Hill reaction. The O_2 contained a small amount of isotope which appeared to be derived from water oxygen that had exchanged with $K_2C^{18}O_3$. In addition, it was found that spinach chloroplasts catalyze an exchange of oxygen between K_2CO_3 and water under experimental conditions where the non-enzymic rate was very low.

MATERIALS AND METHODS

K₂C¹⁸O₃ was purchased from the Weizman Institute of Science, Rehovoth, (Israel). Spinach chloroplasts were isolated in 0.35 M NaCl and were washed once with the NaCl solution¹⁰. Grana were prepared by disruption of the chloroplasts in a large volume of distilled water. The chloroplasts or grana were depleted of CO₂ in double-arm Warburg vessels featuring replacement of the usual center well by a trough fused to the wall of the main compartment of the vessel and connected with one side arm¹¹. Conventional Warburg vessels of 5 ml volume were employed in the isotope experiments. These vessels were attached to manometers which were modified slightly for gas collection. The volume of gas in the closed system was determined by calibration with mercury. The experiments were carried out in a refrigerated bath maintained at 8.5°. Red or white light was provided from below at sufficient intensity to saturate the reaction. At the end of the illumination, the gas was collected for isotopic analysis.

The amount of ferricyanide reduced was determined on trichloroacetic acid filtrates of the supernatant from the reaction mixtures 10 . The amount of O_2 produced was calculated as $\frac{1}{4}$ the amount of ferricyanide reduced based on the stoichiometry of the reaction previously observed at pH 6.8 (ref. 10). The relationship between ferricyanide reduction and O_2 evolution was examined at pH 8.6 and the results were the same as at pH 6.8. Since the reactions were carried out in air, the observed value for atom per cent excess 18 O was multiplied by a dilution factor. The value for the dilution factor was based on the ratio of O_2 present in the vessel and manometer to the O_2 evolved in the Hill reaction.

The ratio, R, of O_2 with mass 32 to O_2 with a mass of 34 was determined with a Consolidated-Nier isotope-ratio mass spectrometer unless otherwise indicated. The ratio of mass 32 to mass 34 was read with a precision of 1 to 2 parts per 4000. This ratio was determined for a standard sample of air in every experiment. The determination was repeated alternately many times for the standard and experimental sample. Atom per cent ¹⁸O was calculated from the following equation:

Atom per cent ¹⁸O =
$$\frac{100}{2R+1}$$

Atom per cent excess 18O was obtained by subtracting normal 18O abundance.

The isotope abundance of the various species of carbonate was determined at the end of the experiment. The vessel contents were frozen and a spatula of dry

citric acid was added. When O₂ was collected, the samples were kept frozen during this period, and the citric acid added later. The vessel was attached to the gas collection apparatus, evacuated and the contents were thawed in cold water. The CO₂ evolved in the first 30 sec was collected for analysis. The isotopic analyses of the CO₂ samples were carried out with a Consolidated Engineering Company mass spectrometer, model 21620.

The ratio of CO_2 with mass 44 to mass 46 and ratio of CO_2 with mass 46 to mass 48 was determined. The following equations were used to calculate the ¹⁸O abundance when the isotope concentrations were of the order of 10 atom per cent ¹⁸O or higher:

Atom per cent ¹⁶O =
$$\frac{\frac{46}{48} \cdot 100}{2 + \frac{46}{48}}$$

Atom per cent ¹⁸O = 100 -- atom per cent ¹⁶O

The contribution of the mass-45 and mass-47 peaks were neglected. The ¹⁸O content of the K₂C¹⁸O₃ was 74 atom per cent ¹⁸O, in agreement with the supplier's analysis. Below 10 atom per cent ¹⁸O the contribution of the mass-48 peak is negligible. Thus, in this range the ¹⁸O abundance of the CO₂ was calculated by using the following equation:

Atom per cent ¹⁸O =
$$\frac{100}{2 \cdot \frac{44}{46} + 1}$$

Atom per cent excess 18O was obtained by subtracting normal 18O abundance.

RESULTS

The oxygen exchange between CO₂ and water was investigated under different experimental conditions. The results in Table I indicate that with the proper choice of experimental conditions, the exchange rate is very slow in the absence of chloroplasts or grana (cf. MILLS AND UREY5). The addition of chloroplasts or grana markedly accelerates the rate. The exchange between K2C18O3 and water was measured by determining the 18O content of the CO₂ released by acid at the end of the reaction. The K₂C¹⁸O₃ contained 74 atom per cent ¹⁸O. In all these experiments the chloroplasts or grana were aged in buffer for 1 or 2 h before measuring the exchange reaction. During the 30-min incubation period in Expt. 1, the pH was 8.4. Most of the oxygen had exchanged since the isotopic content of the CO₂ was 0.8 atom per cent excess. Expt. 1b was carried out in the dark in the absence of ferricyanide. The CO2 contained 0.95 atom per cent excess 18O. Thus, the exchange is not dependent on light or oxidant. The conditions for Expt. 2a were the same as in Expt. 1a except that the chloroplasts were omitted. The CO₂ released at the end of the incubation period contained 66.4 atom per cent excess 18O. The loss of isotope in Expt. 1 was not due to labile CO2 released from the chloroplasts. Expt. 2b was a duplicate of Expt. 2a except that the chloroplasts were added at the end of the incubation period, just prior to freezing. The isotope content of the CO, was 63.3 atom per cent excess 18O.

Chloroplasts contain carbonic anhydrase which was measured by the manometric

TABLE I

THE EFFECT OF CHLOROPLASTS AND GRANA ON THE OXYGEN EXCHANGE BETWEEN $K_2\mathrm{CO}_3$ and $H_2\mathrm{O}$

Expt. 1: (a). The reaction mixture contained 70 μ moles of potassium pyrophosphate buffer (pH 6.7), 200 μmoles of NaCl and chloroplasts equivalent to 0.1 mg of chlorophyll in a final volume of 1.2 ml. The trough of the vessel contained 0.5 ml of 20 % KOH. The vessel was incubated for 2 h at 8.5° in the dark. Then a 1-ml aliquot was transferred to the main compartment of a fresh vessel whose side arm contained 10 μ moles of K₃Fe(CN)₆ and 60 μ moles of K₂C¹⁸O₃ in 0.2 ml of H₂O. At the onset of illumination, the contents of the side arm were tipped in Control experiments indicated that the pH was 8.4. The vessel was illuminated for 30 min at 8.5° . The contents of the vessel were frozen and the 18 O content of the CO_2 released by acid was determined as described in MATERIALS AND METHODS (b). The reaction mixture and the experimental conditions were identical with (a) except that the ferricyanide was omitted and the vessel was kept in the dark during the 30-min incubation period. Expt. 2: (a) The reaction mixtures were the same as in Expt. 1a except that no chloroplasts were added The 2-h preincubation period was omitted. The vessels were not illuminated. (b). The conditions were the same except that chloroplasts equivalent to o.1 mg of chlorophyll were added at the end of the 30-min incubation period. The 18O content of the CO, released by citric acid was determined as described in MATERIALS AND METHODS. Expt. 3: The reaction mixtures contained 70 µmoles of tricine(hydroxymethyl)methylglycine (pH 6.7), 70 μ moles of NaCl, and chloroplasts or grana equivalent to 0.1 mg of chlorophyll, in 1.2 ml H_2O . The contents were incubated in Warburg vessels with KOH in the trough, for 1 h at 8.5° in the dark. At the end of the incubation a 1.0-ml aliquot from each vessel was transferred to a fresh vessel. The side arm of each vessel contained 50 μ moles of $K_2C^{18}O_3$ in 0.2 ml of H_2O . The contents of the side arm were tipped in. The pH of the reaction mixture after adding the K₂C¹⁸O₃ was 8.6. The vessels were incubated for 30 min at 8.5° in the dark. The ¹⁸O content of the CO₂ released by citric acid was determined as described in MATERIALS AND METHODS. Expt. 4: Two vessels were set up. One contained 150 µmoles of potassium phosphate buffer (pH 6.6) and grana equivalent to 0.48 mg of chlorophyll in 1.35 ml of H₂O. The other contained the buffer, but no grana. The contents of the vessels were incubated for 1 h at 8.5° in the dark. An 0.9-ml aliquot from each vessel was transferred to a new vessel containing 300 μ moles of NaCl, 15 μ moles of sodium acetate and 0.021 µmoles of 2,6,3'-trichlorophenolindophenol (total volume 1.2 ml). The side arm of each vessel contained 15 μ moles of $K_2C^{18}O_3$ in 0.35 ml H_2O . The contents of the side arm were tipped in and the vessels incubated in the dark for 30 min at 8.5°. The ¹⁸O content of the CO_2 released by citric acid was determined as described in MATERIALS AND METHODS.

Expt. No.	Experimental conditions	Atom % excess 180 in CO ₂ released at end of the experiment	
I	Potassium pyrophosphate buffer (pH 8.4), 60 μ moles $K_2C^{18}O_3$;	0	
	(a) chloroplasts, illuminated, 30 min at 8.5°; (b) chloroplasts, dark, 30 min at 8.5°	o.8 o.95	
2	(a) same as 1b except that the chloroplasts were omitted, dark, 30 min at 8.5°; (b) same as 1b, chloroplasts added at the end of the 30-min	66.4	
	incubation period	63.3	
3	Tricine buffer (pH 8.6), 50 μ moles of $K_2^{C^{18}O_3}$;		
	(a) chloroplasts, dark, 30 min at 8.5°; (b) grana, dark, 30 min at 8.5°	4·2 10.7	
4	Potassium phosphate buffer (pH 6.8), 15 μ moles K ₂ C ¹⁸ O ₃ ;		
	(a) grana, dark, 30 min at 8.5°; (b) no grana, dark, 30 min at 8.5°	1.6 20.9	

technique of Krebs¹². The exchange reaction is probably catalyzed by the enzyme present in chloroplasts. Kondo, Chiba and Kawai¹³ have purified carbonic anhydrase from spinach. They found it to be a homogeneous protein by electrophoretic analysis. The plant enzyme contains no Zn and is stabilized by 0.1 M NaCl. Since the chloroplasts in Expt. 1 were isolated in 0.35 M NaCl, it seemed feasible that disruption of the

chloroplasts in water to produce grana would result in loss of carbonic anhydrase. This proved to be the case. In Expt. 3, chloroplasts and grana from the same spinach preparation were compared for their ability to accelerate the exchange of oxygen between K_2CO_3 and water. The experiments were carried out in tricine(hydroxymethyl) methylglycine buffer¹⁴ because this buffer has a pK of 7.95 and may be adjusted to the desired pH with hydroxide or carbonate ions. The CO_2 remaining at the end of the experiment when chloroplasts were present, contained 4.2 atom per cent excess ¹⁸O and when grana were employed, contained 10.7 atom per cent excess ¹⁸O. There was considerable variation in the exchange rate with different batches of spinach. With chloroplasts, the isotope content of the CO_2 released by acid, ranged from 0.2 to 4.2 atom per cent excess ¹⁸O in five experiments carried out under the conditions of Expt. 1 or 3. However, with one spinach preparation, the exchange rate was very low as the CO_2 contained 38 atom per cent excess ¹⁸O at the end of an experiment which was identical with Expt. 1a. Under the same conditions, with grana, the range was from 10.7 to 38 atom per cent excess ¹⁸O.

The exchange was measured in an experiment at pH 6.8 with and without grana, and the results of Expt. 4a indicate that the CO₂ remaining contained 1.6 atom per cent excess ¹⁸O when grana were present. Under the same experimental conditions, but without grana, the CO₂ remaining contained 20.9 atom per cent excess. As the pH is lowered the non-enzymic exchange reaction increases rapidly⁵.

Izawa¹⁵ reported that his preparations of chloroplasts and grana did not contain much carbonic anhydrase when measured manometrically. The carbonic anhydrase activity of the chloroplasts employed in these experiments, when determined manometrically, was not as large as would be predicted from the isotope-exchange experiments reported here. The reason for this discrepancy is not known. It does suggest that there might be a mechanism responsible for the rapid exchange of oxygen between CO₂ and the water in the chloroplasts other than that catalyzed by carbonic anhydrase. However, a more detailed examination of the exchange reaction would be needed to investigate this possibility.

IZAWA¹⁵ found that the addition of erythrocyte carbonic anhydrase shortened the time required to obtain the CO₂ effect in the Hill reaction with quinone. I also found that the addition of spinach carbonic anhydrase to the chloroplast-buffer mixture facilitated the removal of CO₂ in the ferricyanide Hill reaction.

The isotopic composition of the O_2 evolved by illuminated spinach chloroplasts and grana with ferricyanide as oxidant is given in Table II. For Expt. 1 the grana were depleted of CO_2 by incubating them in tricine(hydroxymethyl)methylglycine¹⁴ (pH 6.7) with KOH in the trough for 1 h at 8.5°. The reaction mixture was transferred to a fresh flask containing ferricyanide and 50 μ moles of $K_2C^{18}O_3$ (74 atom per cent ¹⁸O) in the side arm. The contents of the side arm were tipped in immediately before illumination. The addition of the carbonate altered the pH to 8.6. The vessel was illuminated and at the end of the illumination the O_2 was collected for isotopic analysis. The amount of isotope remaining in the CO_2 released by acid was determined.

The water was not analyzed for its isotope content in the experiments reported here. However, the amount of isotope in the water may be calculated from the amount of ¹⁸O in the CO₂ released by acid at the end of the experiment (see footnote *** of Table II). The calculated values are given in the last column of Table II. The O₂ evolved in Expt. I contained 0.07I atom per cent excess ¹⁸O while at the end of

TABLE II

ISOTOPIC COMPOSITION OF THE OXYGEN EVOLVED BY ILLUMINATED SPINACH CHLOROPLASTS AND GRANA

Expt. 1: The vessel contained 70 μ moles of tricine buffer (pH 6.7) and grana equivalent to 0.1 mg of chlorophyll in a final volume of 1.2 ml. The trough of the vessel contained 0.5 ml of 20 % KOH. The vessel was incubated for 1 h at 8.5°. A 1-ml aliquot was transferred to a fresh flask whose side arm contained 10 μ moles of K_3 Fe(CN)₆ and 50 μ moles of K_2 Cl⁸O₃ in 0.2 ml of water. At the onset of illumination the contents of the side arm were tipped in. Control experiments in dicated that the pH was 8.6. The vessel was illuminated for 30 min at 8.5°. The contents of the vessel were frozen and the gas collected for analysis. The ¹⁸O content of the CO₂ released by acid was determined. Other experimental details are as described in materials and methods. Expts. 2, 3, 4, and 5: For each experiment a vessel was set up which contained 70 μ moles of potassium pyrophosphate buffer (pH 6.7), 200 µmoles of NaCl, and chloroplasts equivalent to 0.1 mg of chlorophyll in a final volume of 1.2 ml. The trough of the vessel contained KOH. The vessels were incubated for 2 h at 8.5°. Then a 1-ml aliquot was transferred to a fresh vessel whose side arm contained 10 µmoles of K₃Fe(CN)₆ and 60 µmoles of K₂C¹⁸O₃ in 0.2 ml of water. At the onset of illumination the contents of the side arm were tipped in. The pH was now 8.4. The illumination period was 30 min at 8.5°. Other experimental details are as described for Expt. 1. Expt. 6: The reaction mixture contained 0.027 μ moles of 2,6,3'-trichlorophenolindophenol, 140 μ moles of potassium phosphate buffer (pH 6.6), 350 μ moles of NaCl, 15 μ moles of sodium acetate and grana equivalent to 0.2 mg of chlorophyll in a final volume of 1.5 ml. The trough of the vessel contained KOH. The vessel was incubated for 1 h at 20°. A 1.2-ml aliquot was transferred to another vessel whose side arm contained 15 μ moles of K₃Fe(CN)₆ and 15 μ moles of K₂Cl⁸O₃ in 0.3 ml of water. At the onset of illumination the contents of the side arm were tipped in. The pH was 6.8. The vessel was illuminated for 30 minutes at 8.5°. Other details are as described in Expt. 1. Expt. 7: The experimental procedure was the same as for Expt. 6 except that the reaction mixture employed during illumination contained grana equivalent to 0.3 mg of chlorophyll in a final volume of 1.6 ml.

Expt. No.	Conditions	Dilution factor	Atom % excess 18O observed	Atom % excess 18O in evolved O ₂ **	Atom % excess 180 in CO2 released at the end of the experiment	Atom % excess 180 in water (calculated)***
I	Tricine buffer (pH 8.6), grana, 50 μ moles of KC ₂ ¹⁸ O ₃ *	23.6	0.003	0.071	21.0	0.119
2	Potassium pyrophosphate buffer (pH 8.4), chloroplasts, 60 $\mu \rm{moles}$ of $\rm{K_2C^{18}O_3}$	23.2	0.007	0.162	0.25	0.200
3 4 5	Same as 2 Same as 2 Same as 2	18.2 24.0 20.5	0.009 0.007 0.005	0.164 0.168§ 0.10 3 §	o.8 	0.200 0.200 0.200
6	Potassium phosphate buffer (pH 6.8), grana, 15 μ moles of $\rm K_2C^{18}O_3$	15.3	0.002	0.031	1.87	o.0 3 9
7	Same as 6	10.7	0.003	0.032	0.53	0.037

The K₂C¹⁸O₃ contained 74 atom per cent ¹⁸O.

§ The Consolidated Engineering Company mass spectrometer model 21620 was used for the analyses.

the experiment the CO₂ still retained 21 atom per cent excess ¹⁸O. The isotope content of the water at the end of Expt. 1 is 0.119 atom per cent excess ¹⁸O. If the evolved O₂ had been derived from oxygen of CO₂, its isotope content would have to be above that of the water. Therefore, the O2 produced appears to be derived from water oxygen. It

^{**} Calculation: (μ l of O_2 present)/(μ l of O_2 produced) = dilution factor.

*** Sample calculation Expt. 1: μ atoms of oxygen in 1.2 ml of water = 66600; 50 μ moles of $K_2C^{18}O_3$ = 150 μ atoms of oxygen. Fraction of original $K_2C^{18}O_3$ that exchanged = (74 - 21)/74= 0.716; 0.716 \times 150 μ atoms of carbonate oxygen = 107.5; 107.5/66600 = 0.00161 μ atom carbonate oxygen per μ atom water oxygen. Isotopic composition of carbonate = 74 atom per cent ¹⁸O; μ atom carbonate oxygen per μ atom water \times isotopic composition of carbonate = 0.00161 \times 74 = 0.119 atom per cent excess ¹⁸O in water.

must be noted that the kinetics of both the Hill reaction and the exchange reaction complicate the situation. No attempt was made to follow the variation in the rate of either reaction during the illumination period. It is possible that part of the isotope appearing in the O_2 could be derived directly from $K_2C^{18}O_3$ if the labeled O_2 was produced in the first few minutes of illumination before the water was labeled. Earlier experiments have shown that the rate of O_2 evolution declines with time during a 30-min illumination period¹⁰.

The conditions in Expt. 2 were varied by substituting chloroplasts for grana and employing potassium pyrophosphate buffer. The final pH was 8.4. Expts. 3, 4 and 5 were simply duplicates of Expt. 2. The isotope abundance of the oxygen produced was 0.162, 0.164, 0.168, and 0.103 atom per cent excess ¹⁸O in Expts. 2, 3, 4 and 5, respectively. The results are not given, but approximately the same amount of enrichment was obtained when fresh chloroplasts were employed under these conditions. Virtually all of the ¹⁸O of the carbonate had exchanged with water oxygen as the CO₂ remaining contained 6.25 atom per cent excess ¹⁸O in Expt. 2 and 0.8 atom per cent excess ¹⁸O in Expt. 3. The calculated value of the ¹⁶O content of the water for complete exchange when 60 µmoles of K₂C¹⁸O₃ are added is 0.200 atom per cent excess ¹⁸O.

Expts. 6 and 7 were carried out at a more physiological pH. Grana were freed of CO₂ in potassium phosphate buffer (pH 6.6) and 15 μmoles of K₂Cl³O₃ were added to bring the pH to 6.8. Goodle has shown that ferricyanide reduction may be made completely dependent on CO₂ if certain anions are present. In Expts. 6 and 7, 300 μmoles of NaCl and 15 μmoles of sodium acetate were added. The Hill reaction employed in Expts. 6 and 7 differed from the other experiments in Table II in that catalytic quantities of 2,6,3'-trichlorophenolindophenol were added with substrate amounts of ferricyanidele. In Expt. 6, the isotope content of the evolved oxygen was 0.031 atom per cent excess ¹⁸O and the calculated isotope content of the water was 0.039 atom per cent excess ¹⁸O. The CO₂ released at the end of the experiment contained 1.87 atom per cent excess ¹⁸O. Similiar results were obtained in Expt. 7.

DISCUSSION

The data presented here indicate that water oxygen is the precursor of the O_2 evolved in the Hill reaction. However, there are several important reasons for calling attention to the possibility that the oxygen of CO_2 may contribute to the O_2 evolved in the Hill reaction and photosynthesis.

Our knowledge of the relationship between photosynthesis and the ¹⁸O content of atmospheric O₂ is inadequate. CO₂ has a greater abundance of ¹⁸O than the water with which it is in equilibrium¹⁷. Atmospheric O₂ contains more ¹⁸O than water, but less than CO₂ (ref. 18).

Although there is no direct experimental proof, it is believed that the O₂ of the atmosphere has been produced by photosynthesis. Dole¹⁹ and Greene and Voskuyl²⁰ found that the oxygen in the air is about 7.5·10⁻⁵ atomic weight units heavier than the oxygen in the water of the oceans. These investigators postulated that the isotopic composition of O₂ evolved in the photosynthetic reaction is an average of that in atmospheric CO₂ and water. This theory could explain quantitatively the observed enrichment of ¹⁸O in atmospheric O₂. On the other hand, it has been suggested that the discrepancy in the oxygen isotope content of air and water

is due to isotope exchange reactions between molecular oxygen and water or other oxygen-containing compounds¹⁷.

The present investigation was stimulated by the recent demonstration of the CO_2 requirement for the photoevolution of O_2 by Warburg and Krippahl⁷,8 and the establishment of conditions where the CO_2 effect is freely reversible⁹, ¹⁰. Warburg²¹ has suggested that CO_2 is converted into a compound which gives rise to O_2 because of experiments with Chlorella, in which the O_2 precursor can be accumulated in the dark, provided that O_2 , P_1 , CO_2 , and glutamate are present. Since the O_2 precursor is formed from CO_2 and readily decomposes to give CO_2 in the dark, it is regarded as a CO_2 derivative. The fundamental photochemistry is very likely the same in leaves as in Chlorella.

RUBEN, RANDALL, KAMEN AND HYDE1, using either carbonate or water labeled with ¹⁸O, found that the isotopic composition of the O₂ produced by Chlorella was identical with that of the water. Kamen and Barker¹⁸ later pointed out that the rate of equilibration in these experiments was assumed to be that prevailing in the alkaline buffer media, neglecting the possibility of a much faster equilibration inside the cells, where the reaction may be neutral or even slightly acid. HOLT AND FRENCH³ measured the isotopic composition of the O₂ evolved in the Hill reaction with spinach chloroplasts, using enriched water. They found that the isotopic composition of the O₂ evolved was identical with that of the water. The experiments of Dole and Jenks² and Yosida et al.4 were carried out with normal isotopically equilibrated water and CO₂ and depended on the small difference in the ¹⁸O content of these two compounds in isotopic equilibrium¹⁷. They used the density method of isotopic analysis. Yosida et al.4, taking advantage of the difference in the density of fresh water and water made from the O₂ of carbonate compounds, which contains a higher concentration of ¹⁸O, found that water prepared from photosynthetic C_2 was about 3.5 parts per million heavier than fresh water. These investigators interpreted their results as indicating about one-third of the photosynthetically produced O2 must have originated from CO₂. Contradictory results were obtained by Dole and Jenks² who reported little experimental detail. They found that the O2 produced by various plants gave water which was only 0.6 to 1.8 parts per million heavier than the water from which it was liberated by the plants. Dole and Jenks interpreted the enrichment that they obtained to be the result of the isotope exchange equilibrium at 25° between liquid water and O₂ gas¹⁷.

The results reported here indicate that the O_2 evolved in the Hill reaction is derived from water oxygen. The data on the exchange of oxygen between CO_2 and water catalyzed by chloroplasts and grana, stress the importance of taking into account the intracellular environment of the plant being examined. If the oxygen of CO_2 is a precursor of photosynthetic O_2 , it may not be feasible to demonstrate this with present day methods. One can envision individual active centers which function independently. CO_2 may be removed from these centers, but once it goes back in, it stays and cycles during the Hill reaction. Under these circumstances, any labeled O_2 would be produced in the first few cycles. The net isotope content of the evolved O_2 would be so low that it would be extremely difficult to pick up analytically. It would be interesting to examine the isotope content of the O_2 evolved during photosynthesis (net CO_2 consumption using $C^{18}O_2$) under conditions where the intracellular exchange reaction between CO_2 and O_2 was measured.

ACKNOWLEDGEMENTS

This work was supported by a National Science Foundation Grant to Dr. B. Vennes-LAND.

The advice and encouragement of Dr. B. Vennesland during the course of this work and in the preparation of this manuscript is gratefully acknowledged.

REFERENCES

¹ S. Ruben, M. Randall, M. Kamen and J. L. Hyde, J. Am. Ch. ... Soc., 63 (1941) 877.

² M. Dole and G. Jenks, Science, 100 (1944) 409.

- ³ A. S. HOLT AND C. S. FRENCH, Arch. Biochem., 19 (1948) 429.
- ⁴ T. Yosida, N. Morita, H. Tamiya, H. Nakayama and H. Huzisige, *Acta Phytochim.*, 13 (1942) 11.
- ⁵ G. A. MILLS AND H. C. UREY, J. Am. Chem. Soc., 62 (1940) 1019.

⁶ J. R. G. Bradfield, Nature, 159 (1947) 467.

- O. WARBURG AND G. KRIPPAHL, Z. Naturforsch., 13b (1958) 509.
- 8 O. WARBURG AND G. KRIPPAHL, Z. Naturforsch., 15b (1960) 367
- ⁹ B. K. STERN AND B. VENNESLAND, J. Biol. Chem., 235 (1960) PC 51.
- ¹⁰ B. K. STERN AND B. VENNESLAND, J. Biol. Chem., 237 (1962) 596.
- 11 O. WARBURG AND G. KRIPPAHL, J. Natl. Cancer Inst., 24 (1960) 51.
- ¹² H. A. Krebs, Biochem. J., 43 (1948) 525.
- ¹⁸ K. Kondo, H. Chiba and F. Kawai, Bull. Res. Inst. Food Sci., Kyoto Univ., 8 (1952) 17, 13 (1954) 1.
- 14 N. E. Good, Arch. Biochem. Biophys., 96 (1962) 653.
- 15 S. Izawa, Plant Cell Physiol. (Tokyo). 3 (1962) 221.

¹⁶ N. E. Good, Plant Physiol., 38 (1963) 298.

- 17 H. C. UREY AND L. GRIEFF, J. Am. Chem. Soc., 57 (1935) 321.
- 18 M. D. KAMEN AND H. A. BARKER, Proc. Natl. Acad. Sci. U.S., 31 (1945) 8.

19 M. Dole, J. Am. Chem. Soc., 57 (1935) 2731.

20 C. H. GREENE AND R. J. VOSKUYL, J. Am. Chem. Soc., 61 (1939) 1342.

21 O. WARBURG AND G. KRIPPAHL, Z. Naturforsch., 15b (1960) 788.

Biochim. Biophys. Acta, 75 (1963) 340-348